Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian-Ming Gu, ${ }^{\text {a }}$ Mao-Sheng Xu ${ }^{\text {b }}$ and Xiu-Rong Hu*

${ }^{\text {a }}$ Center of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China, and ${ }^{\mathbf{b}}$ Chemistry Department, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China

Correspondence e-mail:
huxiurong@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.036$
$w R$ factor $=0.088$
Data-to-parameter ratio $=12.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1-(Diphenylphosphinoyl)-3,3-dimethylbut-1-yne

The title compound, $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{OP}$, has a mirror plane passing through the phosphinoyl and acetylene groups. There is a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction.

Comment

Acetylenic phosphine oxides have attracted considerable interest because they are versatile intermediates for the synthesis of complex natural products and biologically active compounds (Braga et al., 2002). The asymmetric unit of the title compound, (I), consists of a half molecule. The molecule contains tert-butyl and $-\mathrm{O}=\mathrm{P}(\mathrm{Ph})_{2}$ moieties linked by an acetylene fragment. Atoms C9 and P1 and the acetylene group form a linear moiety and are located on a mirror plane. Atom P1 has a slightly distorted tetrahedral configuration. Bond angles around P1 are in the range 104.5 (1)-114.2 (2) ${ }^{\circ}$ (Table 1). There are two benzene-ring planes, forming a dihedral angle of 119.15 (9) ${ }^{\circ}$. The three-dimensional framework of (I) is stabilized by a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction (Table 1).

(I)

Experimental

tert-Butylethynylphosphine (50 mmol) was dissolved in acetone $(50 \mathrm{ml})$, the mixture cooled to 273 K and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(6 \mathrm{ml})$ in acetone

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids. [Symmetry code: (*) $1-x, y$, z.

Received 11 October 2004 Accepted 26 October 2004 Online 6 November 2004

Figure 2
The crystal structure of (I). H atoms have been omitted.
$(30 \mathrm{ml})$ added dropwise in 1 h . The mixture was extracted with ethyl acetate, dried with MgSO_{4} and crystallized from diethyl ether and petroleum ether to obtain the title compound, (I), as a colorless solid (yield $13.5 \mathrm{~g}, 96 \%$; Charrier et al., 1966).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{OP}$
$M_{r}=282.32$
Orthorhombic, Cmc_{1}
$a=14.4742$ (7) \AA
$b=9.5767$ (7) \AA
$c=11.2075(6) \AA$
$V=1553.5(2) \AA^{3}$
$Z=4$
$D_{x}=1.207 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.873, T_{\text {max }}=0.983$
7260 measured reflections

Mo $K \alpha$ radiation
Cell parameters from 8920

reflections

$\theta=2.5-27.5^{\circ}$
$\mu=0.17 \mathrm{~mm}^{-1}$
$T=296$ (1) K
Block, colorless
$0.60 \times 0.20 \times 0.10 \mathrm{~mm}$

$$
\begin{aligned}
& 1688 \text { independent reflections } \\
& 1309 \text { reflections with } F^{2}>2 \sigma\left(F^{2}\right) \\
& R_{\mathrm{int}}=0.036 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-18 \rightarrow 18 \\
& k=-12 \rightarrow 12 \\
& l=-13 \rightarrow 14
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.088$
$S=1.00$
1309 reflections
102 parameters
H -atom parameters constrained
$w=1 /\left[0.001 F_{o}{ }^{2}+1.1 \sigma\left(F_{o}{ }^{2}\right)\right] /\left(4 F_{o}{ }^{2}\right)$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.29 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.33 \mathrm{e} \mathrm{A}^{-3}$
Absolute structure: (Flack, 1983),
632 Friedel pairs
Flack parameter $=0.01$ (1)

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.97	2.55	$3.464(3)$	156

Symmetry code: (i) $x, 1-y, z-\frac{1}{2}$.

The H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.97 \AA$, and included in the refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Braga, A. L., Vargas, F., Zeni, G., Silvera, C. C. \& de Andrade, L. H. (2002). Tetrahedron Lett. 43, 4399-4402.
Charrier, C., Chodkiewicz, W. \& Cadiot, P. (1966). Bull. Soc. Chim. Fr. pp. 1002-1011.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.60. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Watkin, D. J., Prout, C. K., Carruthers, J. R. \& Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Oxford, England.

